Categories
Epac

To estimate an conversation between biglycan and IGF-I signaling we treated biglycan-deficient cells (siBGN) as well as cells transfected with control scramble siRNAs (siScr) with IGF-I (10 ng/mL) for 48 h and measured their proliferation rate

To estimate an conversation between biglycan and IGF-I signaling we treated biglycan-deficient cells (siBGN) as well as cells transfected with control scramble siRNAs (siScr) with IGF-I (10 ng/mL) for 48 h and measured their proliferation rate. (LRP6) resulting in attenuated -catenin degradation. Furthermore, applying anti–catenin and anti-pIGF-IR antibodies to MG-63 cells exhibited a cytoplasmic and to the membrane conversation between these molecules that increased upon exogenous biglycan treatment. CX-5461 In parallel, the downregulation of biglycan significantly inhibited both basal and IGF-I-dependent ERK1/2 activation, ( 0.001). In summary, we report a novel mechanism where biglycan through a LRP6/-catenin/IGF-IR signaling axis enhances osteosarcoma cell growth. 0.001; Physique ?Physique11). Open in a separate window Physique 1 Effect of siBGN on MG63 cell proliferation. MG63 cells were harvested and seeded (3,500 cells/well) on 96-well plates and transfection with siRNAs (short interfering RNAs) was performed. Cells, in each well, were incubated in serum-free medium and transfected with either siRNAs against biglycan (siBGN) or scrambled siRNAs (siScr), used as unfavorable control. Cells were counted after a 48 h incubation period, using fluorometric CyQUANT assay kit. Results represent the average of three individual experiments. Means S.E.M were plotted; statistical significance: *** 0.001 compared with the respective control samples. IGF-I modulation of biglycan expression In order to identify possible partners/mediators of biglycan action we screened the effect of CX-5461 key regulators of osteosarcoma growth on biglycan expression. This approach identified IGF-I as a regulator of biglycan expression. Indeed, upon treating MG63 with IGF-I (10 ng/mL) for 48 h and performing western blot analysis to supernatant and cell extract, a statistically significant increase of secreted biglycan ( 0.01), was demonstrated (Physique ?(Figure2).2). Utilization of antibody specific for actin on secreted proteins excluded a contamination by cytoskeletal proteins (data not shown). Biglycan mRNA levels were also significantly ( 0.01) upregulated, as shown by real-time PCR analysis (Physique ?(Figure2D).2D). These data are well in accord with XPAC previous reports where IGF-I has been shown to regulate the expression of biglycan in human osteoblast-like cells (23). Open in a separate windows Physique 2 Effect of IGF-I on biglycan expression at the mRNA and protein level. (A) Expression of extracellular and intracellular Biglycan (BGN) levels of cells treated with serum-free medium (control) and cells treated with IGF-I (10 ng/ml) was determined by Western blot analysis. Densitometric analysis of the extracellular BGN protein band (100 KDa glycosylated proteoglycan) (B) and of the intracellular BGN protein band (45 KDa protein core band) (C) were normalized against actin and plotted. Representative blots are presented. (D) Biglycan mRNA levels in MG63 cells treated with IGF-I (10 ng/ml) during 48 h were determined by real time PCR using primers specific for the BGN gene and normalized against GAPDH. Results represent the average of three individual experiments. Means S.E.M were plotted; statistical significance: ** 0.01 compared with the respective control samples. Due to the fact that, IGF-I/IGF-IR is a key signaling pathway of bone anabolic processes and established in early reports to regulate osteosarcoma cell proliferation (24) we wanted to verify its putative action on MG63 cell growth and assess possible connection to biglycan effects. Treating osteosarcoma cells with IGF-I (10 ng/ml) induced a significant increase in cell proliferation ( 0.01; Physique ?Physique3).3). To estimate an conversation between biglycan and IGF-I signaling we treated biglycan-deficient cells (siBGN) as well as cells transfected with control scramble siRNAs (siScr) with IGF-I (10 ng/mL) for 48 h and measured their proliferation rate. IGF-I-induced increase in cell proliferation ( 0.01) was abolished in biglycan-deficient cells ( 0.001; Physique ?Physique3).3). Therefore, biglycan was shown to modulate significantly both basal and IGF-I induced cell proliferation of MG63 cells, suggesting an interplay between biglycan and IGF-I signaling in the regulation of osteosarcoma growth. Open in a separate window Physique 3 Effect of IGF-I on cell proliferation of MG63 cells. MG63 cells were harvested and seeded (3,500 cells/well) CX-5461 on 96-well plates and transfection with siRNAs was performed. Cells, in each well, CX-5461 incubated with 0% FBS-medium (control), cells incubated with 10 ng/ml IGF-I (IGF-I) and cells transfected with either siRNAs against biglycan (siBGN) or scrambled siRNAs (siScr) with or without IGF-I addition, were counted using fluorometric CyQUANT assay kit. Results represent the average of three individual experiments..